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a b s t r a c t

In this paper we compare linear regression with tree regression for analysis of the influence of soil
properties on the sorption and retention of added Cd, Cu and Pb by 20 soil horizons typical of cropped
soils in Galicia (N.W. Spain); our measure of sorption/retention capacity was Kr, a recently introduced
adimensional parameter. Sorption and retention of Cd was depressed by the presence of Cu and Pb. The soil
parameters that were most associated, overall, with differences in Cd, Cu and Pb sorption and retention
eywords:
lassification and regression trees
oil
orption
esorption

were cation exchange capacity (CEC), pH and Mn oxides’ content. Tree regression, which can take into
account variation on both global and local scales, afforded better-fitting models than linear regression,
which only reflects global tendencies; but for coherent interpretability of tree regression results it is just
as important to avoid overfitting as in the case of linear regression.

© 2009 Published by Elsevier B.V.
eavy metal
oil characteristics

. Introduction

The availability of heavy metals and other soil pollutants for
ptake by plants, and the risk of their finding their way into surface
r underground waters, depend on their sorption and desorption by
oil components, where “sorption” encompasses adsorption, pre-
ipitation on soil particle surfaces, and fixation, and “desorption”
ndicates the release of sorbed species into the medium surround-
ng the particles by which they had been sorbed [1–3]. The sorption
nd desorption of metals – especially metal cations, the directly
ioavailable form – predominantly involves negatively charged
urfaces on organic matter, clay minerals, and metallic oxides or
ydroxides, especially Fe and Mn oxides [4–8]. Depending on the
elative proportions and compositions of these soil fractions, and
n soil texture and total cation exchange capacity (CEC) (which
tself depends mainly on soil organic matter and clay content),

soil will have more or less capacity to bind a particular heavy
etal species, and will bind it more or less strongly. Accordingly,
he distribution of metal cations that are added to the soil among
hese fractions and others depends on the properties of these frac-
ions as well as on the nature and quantity of the metal added
7,9,10]. In fact, soil properties appear to be more determining

∗ Corresponding author. Tel.: +34 986812630; fax: +34 986812556.
E-mail address: emmaf@uvigo.es (E.F. Covelo).

304-3894/$ – see front matter © 2009 Published by Elsevier B.V.
oi:10.1016/j.jhazmat.2009.09.083
than the characteristics of the metal in this respect [11,12]. Given
the complexity of soil properties, this makes empirical charac-
terization of their influence on sorption and retention processes
essential.

Cd, Cu and Pb are among the potentially most toxic heavy met-
als, and are present – often together – in numerous polluting spills
and in agrochemicals. In a previous work, in which we evaluated
the sorption and retention of Cd, Cu and Pb, separately or in mutual
competition, by 20 soil horizons, we found that the most useful
measure of the capacity of a soil for sorption and retention of these
metals was Kr, a novel adimensional parameter that integrates data
obtained using a series of different dosage levels [13]. The influence
of soil properties on a compound Kr value (a factor score afforded by
a principal components analysis of Kr values obtained under var-
ious conditions) was modelled by multivariate linear regression
(LR). In the present paper we compare the performance of LR of
Kr values with that of tree regression [14], which for a series of
native soils and different measures and different measures of sorp-
tion and retention capacity has been reported to be superior to LR
[15].

Data used in previous work [15,16] were from competitive sorp-

tion and desorption experiments of Cd, Cr, Cu, Ni, Pb, and Zn.
Nevertheless, in this work the models obtained are not only for
competitive sorption of Cd, Cu and Pb, but also for individual sorp-
tion and retention. Moreover, results from both types of data are
compared and discussed.

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:emmaf@uvigo.es
dx.doi.org/10.1016/j.jhazmat.2009.09.083
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.1. Sampling

We selected 20 soil horizons as representative of the most
idely cropped soil orders in our region that commonly receive

nputs containing Cd, Cu and/or Pb. Six samples of each hori-
on were collected using an Eijkelkamp Model A sampler and
ere transported in polyethylene bags to the laboratory, where

hey were air dried, passed through a 2 mm mesh sieve, pooled,
nd homogenized in a Fritsch Laborette 27 vibratory solid sample
omogenizer. The homogenized sample was split into three sub-
amples, and each of these replicates was in turn subsampled for
oil analyses and for sorption/desorption experiments.

. Variables and methods

.1. Soil characterization

The following soil properties were determined with a view to
valuating their influence on the capacity of the soil horizons to
orb and retain Cd, Cu and Pb.

Soil pH was determined with a pH meter in 2:1 water/soil
uspensions [17]. Particle size distributions were determined fol-
owing oxidation of organic matter with hydrogen peroxide; the
raction >50 mm was separated by sieving, and the sub-50 mm
raction was characterized as per Day [18]. Organic carbon was
uantified by the method of Walkey and Black [19]. CEC and
xchangeable cations (Ca2+, Mg2+, K+ and Na+; LODs: 5.8, 1, 26,
nd 4.5 �g L−1, respectively) were determined by extraction with
.2 M ammonium chloride buffered at the soil pH [20–21], fol-

owed by quantification by inductively coupled plasma, atomic
mission spectrometry (ICP-OES). Exchangeable acidity was deter-
ined using a 1 M KCl replacing solution and titration against 0.1 M
aOH, with phenolphthalein as indicator [22]. Oxides were deter-
ined using the method of Mehra and Jackson [23]: samples were

haken in a solution of 0.11 M sodium hydrogen carbonate and
.27 M sodium citrate, and the Fe, Al and Mn contents of the extracts
ere determined by inductively coupled plasma, atomic emission

pectrometry (ICP-OES) (LODs: 14, 11, and 0,2 �g L−1, respectively).
he measured resolution of the system is 0.006 nm at 200 nm. The
0 by 160 mm echelle grating (manufactured by Perkin-Elmer) has
9 lines per mm and a blaze angle of 63.4◦.

.2. Sorption and desorption experiments

Sorption experiments were conducted following the methods of
lberti et al. [24] and Gomes et al. [11], as modified by Harter and
aidu [25]. Non-competitive sorption was evaluated using single-
etal sorption solutions of Cu, Cd or Pb nitrates at concentrations

f 0.01, 0.03, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2 and 3 mmol L−1;
nd competitive sorption using multi-metal solutions (Cu + Cd + Pb)
n which each metal had the same concentration (again 0.01, 0.03,
.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2 or 3 mmol L−1). Both single- and
ulti-metal solutions also contained 0.01 M NaNO3 as background

lectrolyte. The heavy metals were used in the form of nitrates
ecause of the high solubility of these salts, and the concentrations
ere chosen to range from normal values to values representa-

ive of severe pollution. Triplicate suspensions of 6 g soil samples
n 100 mL of solution in polyethylene tubes were shaken in a rotary
haker for 24 h at 25 ◦C and then centrifuged at 5000 rpm; the pellet
as set aside for use in the desorption stage of the experiment; the

upernatant was filtered through Whatman 42 paper; the result-

ng filtrate was analysed by ICP-OES in a Perkin-Elmer Optima 4300
V apparatus (USA); and the quantity of each metal that had been

orbed was calculated from the difference between its concentra-
ions in solution before the addition of soil and after equilibration
shaking) with the soil.
Materials 174 (2010) 522–533 523

Following Madrid and Díaz-Barrientos [26], desorption experi-
ments were conducted using the pellets obtained in the sorption
phase of the experiments. The pellets were dried at 45 ◦C and
weighed; each pellet was shaken for 24 h in a polyethylene tube
with 100 mL of 0.01 M NaNO3 solution at 25 ◦C, which was then
centrifuged at 5000 rpm; the supernatant was filtered through
Whatman 42 paper; the resulting filtrate was analysed by ICP-OES;
and the quantity of each metal that had been retained on the soil
sample was calculated from the quantity sorbed (determined in
the sorption stage of the experiment) and the concentration of the
metal in solution following desorption.

For both sorption and retention data, and in both cases for com-
petitive and non-competitive situations, the parameter Kr [13] was
calculated as follows. Sorption data were fitted with equations of
the forms

Cs,i = Kr1Cp,i (I)

and

Cp,i − Cs,i = Kr2Cp,i (II)

where Cs,i is the amount of metal i that was sorbed per gram of
soil and Cp,i is the amount of metal i that was potentially sorbable,
i.e. the amount in the initial sorption solution (per gram of soil). Kr

was then defined as Kr1 if the coefficient of determination of I was
larger than that of Eq. (II), and 1 − Kr2 otherwise. When thus calcu-
lated from sorption data, Kr varies from 0 for totally non-sorbent
soils to 1 for a soil that completely eliminates metal i from solution.
To measure capacity for retention of sorbed metal in desorption
experiments, Kr was calculated in the same way as for sorption,
except that sorbed metal was replaced by metal retained at equi-
librium; in this case Kr is 0 for a soil that completely releases all
sorbed metal, and for a soil that releases no metal during the des-
orption phase of the experiment it adopts the value obtained using
the corresponding sorption data.

2.3. Regression analyses

For each metal, sorption and retention Kr data obtained as above
were regressed on soil properties using both forward stepwise mul-
tiple linear regression as implemented in SPSS version 16.0 for
Windows, and tree regression as implemented in STATISTICA 7.
In the latter case, because of the inclusion of the three replicate
samples of each horizon, the tree selected was not chosen on the
basis of its cross-validated R2 value; instead, from the tree sequence
generated we chose the smallest tree with more than two terminal
nodes in which the intranodal variances of all terminal nodes were
no greater than 0.011. As an indication of the degree to which the
relationships between the dependent and each independent vari-
able conformed globally to the structure of each regression tree, we
also calculated importance values defined by

I(j) =
∑

t
�S(j, t)

where I(j) is the importance of variable xj and �S(j,t) is the reduction
in mean squared error S that would be achieved if node t of the tree
were split using xj [14].

3. Results and discussion

The properties of the soil horizons used have been published
elsewhere, together with the corresponding Kr values obtained

from the experiments described above [13]; these data are sum-
marized in Table 1. The Kr values were regressed on soil properties
using both tree regression and LR, and Table 2 compares the cor-
responding goodness-of-fit values (coefficients of determination
R2, calculated as usual as

∑
s(ŷs − ȳ)2/

∑
s(ys − ȳ)2, where ȳ is the
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Table 1
Descriptive statistics of the properties of the 20 horizons studied, and of their Kr

values for competitive and non-competitive sorption and retention of Pb, Cu, and
Cd.

Minimum Maximum Mean S.D.

pH 3.660 8.390 5.466 1.183
Organic matter (mg kg−1) 0.020 96.920 36.831 28.448
Al oxides (mg kg−1) 1.580 19.790 8.245 4.939
Fe oxides (mg kg−1) 2.230 65.490 19.528 16.814
Mn oxides (mg kg−1) 0.000 2.220 0.323 0.509
CECe (cmol(+) kg−1) 0.790 156.810 17.638 35.850
Sand (%) 19.500 82.020 56.971 16.470
Clay (%) 6.400 66.600 19.785 1.837

Non-competitive cadmium sorption 0.074 0.986 0.370 0.316
Non-competitive copper sorption 0.046 0.999 0.474 0.331
Non-competitive lead sorption 0.079 1.000 0.546 0.316
Competitive cadmium sorption 0.033 0.621 0.231 0.174
Competitive copper sorption 0.028 0.981 0.392 0.283
Competitive lead sorption 0.104 0.996 0.530 0.259
Total sorption when added together 0.053 0.884 0.400 0.236
Non-competitive cadmium retention 0.000 0.984 0.284 0.352
Non-competitive copper retention 0.012 0.998 0.445 0.345
Non-competitive lead retention 0.034 1.000 0.518 0.334
Competitive cadmium retention 0.000 0.600 0.160 0.184
Competitive copper retention 0.000 0.981 0.365 0.294
Competitive lead retention 0.075 0.996 0.506 0.271

Total retention when added together 0.023 0.877 0.363 0.247

Table 2
Goodness-of-fit (R2) of the models fitted by tree regression and by forward stepwise
multiple linear regression (LR) to the sorption and retention Kr and soil property
data.

Sorption Retention

R2 LR R2 tree R2 LR R2 tree

Non-competitive cadmium 0.94 0.98 0.95 0.97
Non-competitive copper 0.99 0.99 0.90 0.99
Non-competitive lead 0.85 0.95 0.85 0.95
Competitive cadmium 0.96 0.97 0.97 0.98
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Table 4
Coefficients of multiple linear regression of heavy metal retention on standardized
soil variables (only significant coefficients are shown).

Non-competitive Competitive Total

Cd Cu Pb Cd Cu Pb

pH 0.89 0.43 0.29 0.86 0.94 0.75 0.87
Organic matter 0.20 0.29 −0.05 0.10
Al oxides −0.09 0.14 0.11
Fe oxides 0.15 0.20 0.24 0.12 0.07
Mn oxides −0.33 −0.62 −0.19 −0.38
CECe 0.33 0.28 0.34 0.59 0.28 0.38
Sand −0.25 −0.26 0.37 −0.19
Clay 0.59 0.13

Table 5
Importance values in regression trees for heavy metal sorption.

Non-competitive Competitive Total

Cd Cu Pb Cd Cu Pb

pH 0.960 0.963 0.907 0.979 0.988 0.949 0.995
Organic matter 0.190 0.455 0.555 0.140 0.318 0.391 0.317
Al oxides 0.217 0.282 0.337 0.202 0.217 0.270 0.269
Fe oxides 0.393 0.408 0.415 0.359 0.342 0.352 0.361
Mn oxides 0.871 0.820 0.763 0.782 0.834 0.870 0.829
Competitive copper 0.95 0.98 0.94 0.99
Competitive lead 0.91 0.98 0.90 0.98

Total when added together 0.95 0.97 0.95 0.98

ean of the observed values ys, and ŷs the value predicted by the
egression equation). Tree regression always achieved greater R2

han LR, the difference being most marked for Krs for lead, for which
R R2 was lowest.

Tables 3 and 4 list the LR regression coefficients for standardized
oil variables. The three largest in absolute value always included
H and CEC (except that the coefficient of CEC was not significant
n the case of competitive sorption or retention of cadmium), with
H in top position in all cases except for the non-competitive sorp-
ion or retention of lead. However, for any given heavy metal, Mn
xides’ content only had a significant influence for either single-
etal experiments (Cd) or multi-metal experiments (Cu and Pb),

able 3
oefficients of multiple linear regression of heavy metal sorption on standardized
oil variables (only significant coefficients are shown).

Non-competitive Competitive Total

Cd Cu Pb Cd Cu Pb

pH 0.82 0.41 0.29 0.83 0.87 0.73 0.82
Organic matter 0.07 0.20 0.29 −0.18
Al oxides −0.11 0.08 0.14 0.08
Fe oxides 0.18 0.20 0.23 0.09
Mn oxides −0.30 −0.48 −0.41 −0.36
CECe 0.34 0.29 0.33 0.50 0.55 0.42
Sand −0.26 −0.27 0.25 −0.50 −0.20
Clay 0.58 0.10 −0.32
CECe 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sand 0.376 0.565 0.582 0.658 0.488 0.493 0.519
Clay 0.381 0.455 0.466 0.648 0.452 0.413 0.478

never for both. Furthermore, either the LR coefficient of pH was
appreciably greater than that of any other variable (the most usual
situation), or all the significant coefficients were quite similar (the
case of non-competitive sorption and retention of Cu or Pb).

Tables 5 and 6 list tree regression importance values. The three
variables with greatest importance values were in all cases, in
increasing order, Mn oxides’ content, pH, and CEC, and these impor-
tance values were in all cases appreciably larger than those of any
other variable. CEC is a quantitative measure of the ability of a soil
to exchange cations with the soil solution and is expressed in terms
of cmols(+) kg−1 of soil.

In what follows we discuss these results in greater detail for each
metal in turn.

3.1. Cadmium

By far the largest LR coefficient for the non-competitive sorp-
tion and retention of cadmium was that of pH, followed a long way
behind by CECe and Mn oxides’ content. Sorption and retention,
as measured by Kr, increased with pH and CECe (and also with Fe
oxides’ content and, in the case of sorption, organic matter con-

tent); and decreased with increasing Mn and Al oxides’ contents.
For competitive sorption and retention, pH again had the largest LR
coefficient, but the other major predictor of Kr was now clay con-
tent, followed by sand content; sorption and retention increased
with all these variables (and also to a small extent with Al oxides’

Table 6
Importance values in regression trees for heavy metal retention.

Non-competitive Competitive Total

Cd Cu Pb Cd Cu Pb

pH 0.962 0.969 0.912 0.975 0.990 0.965 0.986
Organic Matter 0.170 0.435 0.553 0.119 0.317 0.390 0.304
Al oxides 0.237 0.264 0.323 0.157 0.226 0.272 0.251
Fe oxides 0.398 0.403 0.405 0.335 0.346 0.357 0.361
Mn oxides 0.866 0.823 0.779 0.807 0.844 0.877 0.824
CECe 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sand 0.350 0.550 0.579 0.547 0.477 0.492 0.483
Clay 0.366 0.441 0.456 0.529 0.453 0.409 0.456
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Fig. 1. CART binary regression tree for sorption of cadmium by

ontent in the case of sorption), and decreased slightly with increas-
ng organic matter content.

Whereas the LR equations for non-competitive sorption and
etention of cadmium are more complex than those for compet-
tive sorption and retention, in the sense that they have more

ignificant variables, the reverse is the case for the regression trees
Figs. 1 and 2), the trees for the non-competitive process being less
omplex than those obtained for the competitive process. In fact,
he non-competitive trees involve only CEC and either Fe oxides’
ontent (in the case of sorption) or Mn oxides’ content (reten-
pped soil horizons. Top, non-competitive; bottom, competitive.

tion). The tree for non-competitive sorption predicts a Kr value of
around 0.9, indicative of high sorption capacity, for horizons with
CECe > 19.28 cmol kg−1, and a value of only about 0.15, indicative
of low sorption capacity, for horizons with CECe ≤ 10.97 cmol kg−1

and Fe oxides’ contents lower than 43.4 g kg−1. The major bifurca-

tion of the tree for non-competitive retention is also determined by
CEC, and both the splits on this variable have the same splitting val-
ues as in the sorption tree, but least retention capacity (Kr ∼= 0.05)
is predicted for horizons with both CEC ≤ 10.97 cmol kg−1 and Mn
oxides’ content ≤0.35 g kg−1. Strikingly, it is low Mn oxides’ content
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Fig. 2. CART binary regression tree for retention of cadmium by

hat indicates lower Cd retention capacity, whereas in the LR model
he coefficient of this variable has a negative sign (this is discussed
urther below, in the general remarks and Section 4).

The major bifurcation of the regression tree for competitive
orption of Cd is determined by pH, and other splits by pH, CEC,

nd organic matter content. In this case, even the greatest pre-
icted sorption capacity, predicted for horizons with pH >6.15 and
ECe > 32.9 cmol kg−1, is only moderate (Kr ∼= 0.6). Least capacity
Kr ∼= 0.08) is predicted for horizons with pH ≤4.65; and in keeping
ith the negative LR coefficient of organic matter, horizons with
pped soil horizons. Top, non-competitive; bottom, competitive.

pH in the range 4.65–6.15 are predicted to sorb more or less cad-
mium depending on whether their organic matter content is less
than or greater than 53.1 g kg−1. Since organic matter is generally
one of the most important immobilizers of heavy metals in soils,
and since the LR coefficient of organic matter for non-competitive

sorption of Cd is positive, this latter finding suggests that under
these acidic conditions competition with Cu and Pb is particularly
unfavourable for the binding of Cd to organic matter.

The regression tree for competitive retention of Cd, like
that for competitive sorption, has five internally homoge-
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Fig. 3. CART binary regression tree for sorption of copper by 2

eous terminal nodes. Greatest retention capacity (again no
ore than moderate; Kr ∼= 0.54) is predicted for horizons with

ECe > 32.95 cmol kg−1, while a Kr < 0.1 is predicted for all horizons
ith CECe ≤ 19.28 cmol kg−1 and Mn oxides’ content ≤0.76 g kg−1,

nd a Kr of 0.02 if additionally pH ≤4.65. Once more, it is low

n oxides’ content that is predicted as indicating low Cd reten-

ion capacity. Note also that of the four trees for cadmium, only
he tree for competitive retention has as its splitting variables all
hree variables of greatest importance: CECe, pH and Mn oxides’
ontent.
ped soil horizons. Top, non-competitive; bottom, competitive.

3.2. Copper

According to the LR equations for the non-competitive sorp-
tion and retention of copper, the corresponding Kr values increase
with pH, CECe, Fe oxides’ content and organic matter’s con-

tent, and decrease with increasing sand content; the magnitudes
of all these effects are quite similar, except for that of pH,
which is rather large. For competitive sorption and retention,
Kr increases with pH and CECe (and also to some extent
with Al and Fe oxides’ contents and, in the case of sorption,
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Fig. 4. CART binary regression tree for retention of copper by 2

lay content), and decreases with increasing Mn oxides’ con-
ent.

The regression trees for non-competitive sorption and retention
f copper (Figs. 3 and 4) are morphologically identical and have an

lmost identical distribution of splitting variables and splitting val-
es, the only differences being that although the third-generation
odes 5 and 18 both split with respect to CECe in one tree and
rganic matter in the other, it is node 5 that splits with respect to
ECe in the sorption tree, and node 18 in the retention tree. The
ped soil horizons. Top, non-competitive; bottom, competitive.

splitting variables of both trees are the two of greatest importance
value (CECe and pH), together with sand content and organic matter
content; the affinity of organic matter for Cu is well documented
[27–29]. In both trees, greatest Cu-binding capacity (Kr ∼= 0.98) is

predicted for horizons with pH >5.45 and CECe > 19.28 cmol kg−1;
in fact, the similarity between the sorption and retention Kr values
predicted for these high-Cu-capacity horizons suggests that almost
all their sorbed Cu is retained, i.e. binding is very strong and irre-
versible. Least sorption and retention capacity (Kr < 0.1) is predicted
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or horizons with pH ≤5.45, organic matter content ≤30.6 g kg−1,
nd sand content greater than 70%, i.e. less than 30% of more finely
ivided material with greater metal-binding capacity.

The regression trees for competitive sorption and retention of Cu
re respectively the simplest and the most complex of the four Cu
rees, with respectively five and eight terminal nodes. The former
s nevertheless identical, as regards splitting variables and values,

ith a subtree of the latter. In both these trees, the major split sepa-
ates horizons with CECe ≤ 19.28 cmol kg−1 from those with greater
alues, for which average Kr values of around 0.9 are predicted;
ow-CECe horizons are split with respect to sand content (higher
and content indicating lower Cu-binding capacity); low-CECe,
ow-sand horizons are split with respect to Fe oxides’ content; and
ow-CECe, high-sand horizons are split with respect to Al oxides’
ontent, the lowest Cu-binding capacity (Kr < 0.2) being predicted
or horizons with CECe ≤ 19.28 cmol kg−1, sand content >55% and Al
xides’ content ≤8.7 g kg−1. Highest retention capacity is predicted
or horizons that, besides having CECe > 19.28 cmol kg−1, have

n oxides’ contents >0.46 g kg−1; and lowest retention capacity
Kr ∼= 0.001) for those that, in addition to the above-noted requi-
ites for both low sorption and low retention, have organic matter
ontents ≤1.14 g kg−1. Note that, as in the case of cadmium, there
s an apparent contradiction between the influence of Mn oxides’
ontent predicted by LR and that predicted by the regression tree.

.3. Lead

The LR models for non-competitive Pb sorption and Pb retention
apacities are virtually identical, with regression coefficients of 0.33
r 0.34 for CECe, 0.29 for pH and organic matter, 0.23 or 0.24 for Fe
xides, and −0.26 or −0.27 for sand content (Tables 3 and 4). The
resence of other metals disrupts this identity somewhat. For both
orption and retention, competitive Pb binding increases with both
ECe and pH (though sorption increases about twice as fast with
ECe as does retention), and decreases with increasing sand and Mn
xides’ contents (again about twice as fast in the case of sorption
s in the case of retention); however, clay content reduces sorp-
ion but has no significant effect on retention, while organic matter
ontent aids retention but has no significant effect on sorption.

The splitting variables of the regression trees for non-
ompetitive sorption and retention are those with the largest
oefficients in the corresponding LR models, CECe, pH and organic
atter content, although the main split is in both cases with respect

o pH (Figs. 5 and 6). Horizons with pH >5.45 are predicted to
ave the highest Pb-binding capacities (average Kr > 0.9), and, in
articular, horizons with both pH >5.45 and CECe greater than
bout 11 cmol kg−1 are predicted to have Pb sorption capacities of
round 0.96. Among horizons with pH ≤5.45, both trees predict
hat those with relatively low organic matter contents (less than
bout 37 g kg−1 for sorption, or 30.6 g kg−1 for retention) have least
b-binding capacity (Kr < 0.25).

CECe and organic matter content, but not pH, are likewise among
he splitting variables of the regression trees for competitive sorp-
ion and retention of Pb, alongside sand content and Fe oxides’
ontents in the former case and Al oxides’ content in the latter.
reatest sorption and retention capacity (Kr ∼= 0.96) is predicted for
orizons with CECe > 19.28 cmol kg−1, while least sorption capacity
Kr ∼= 0.16) is predicted for horizons with CECe < 11 cmol kg−1 and
and content greater than about 73%, and least retention capac-
ty (Kr ∼= 0.1) for those with CECe < 11 cmol kg−1, organic matter
ontent less than about 44 g kg−1, and Al oxides’ content less than

−1
bout 2 g kg .

.4. Total heavy metal-binding capacity

In the LR models of total heavy metal-binding capacity, as in
ost of the other cases, the largest coefficient is that of pH, followed
Materials 174 (2010) 522–533 529

by CECe and, with negative sign, Mn oxides’ content. Al oxides’ con-
tent has a positive influence (as do Fe oxides’ and clay contents for
retention), while sand content has a negative influence on sorption.
In keeping with this, in both the regression trees the major split is
on pH (Fig. 7), and both also use CECe, sand and Al oxides’ contents,
while Mn oxides’ content is used only to split a third-generation
node in the retention tree. Note, however, that the splits on both
Mn oxides and Al oxides are of opposite sign to the corresponding
LR coefficients.

3.5. The relationship between the LR and tree regression results

The variable involved in the major bifurcation of each regres-
sion tree was always either CECe or pH: seven trees started with a
split on CECe and the other seven with a split on pH, with a ten-
dency towards pH for non-competitive sorption or retention trees
and CECe for their competitive counterparts. These two variables
were thus identified by the tree regressions as of global signifi-
cance, which both supports the relevance of their inclusion in the
corresponding LR models, and is in keeping with their generally
having the largest LR regression coefficients (pH especially). By con-
trast, as noted above, there is an apparent contradiction between
the LR and tree regression results in regard to Mn oxides’ content:
whereas it is low Mn oxides’ content that is predicted by certain
tree regressions to indicate lower metal-binding capacities, the
coefficients of this variable in the corresponding LR models have
negative signs. In Fig. 7 there is a similar apparent contradiction
regarding Al oxides’ content. This highlights the fact that whereas
LR coefficients represent global trends, regression tree bifurcations
indicate behaviour at the scale corresponding to their level in the
tree: whereas LR coefficients attempt to characterize with a sin-
gle number the relationship that holds between the dependent
variable and the independent variable in the whole of the space
defined by the independent variables, the scope of a regression tree
splitting variable is delimited by the splits that have preceded it
on the tree. However, when local trends contradict global trends,
the possibility that the model is overfitted should also be borne in
mind.

CECe and pH were also, in all trees, the variables with greatest
importance values. However, whereas CECe, with an importance
value of 1 in all trees, was used as a splitting variable a total of
24 times, and at all tree levels, pH (mean importance 0.964) was
used as a splitting variable just three times in addition to the
seven top-level splits mentioned above. Furthermore, while Mn
oxides’ content, which always had the third largest importance
value (mean 0.828), was only used as a splitting variable four times
in all 14 trees (splitting three second-generation nodes and one
third-generation node in retention trees), sand (mean importance
0.511) was used twice as often (splitting 5 second-generation and
3 third-generation nodes), and organic matter (mean importance
0.332) was used nine times (splitting 5 second-, 5 third- and 1
fourth-generation nodes). That the importance value of a variable
does not reflect the number of times it is used for splitting nodes
is as expected, because it was situations such as that of Mn oxides
that originally prompted the definition of importance values [14];
but nor does the global importance represented by importance
values necessarily correspond to the global importance reflected
by the size of LR coefficients. In these trees, the LR coefficient of
pH is generally much larger than that of CECe, while its impor-
tance value is always smaller; and the difference in sign between

the LR coefficients of Mn oxides and the direction of the splits it
performs indicates that although splitting on this variable would
generally eliminate a large amount of variance in Kr, the split would
take one direction at some nodes and the opposite direction at
others.
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Fig. 5. CART binary regression tree for sorption of lead by 20

.6. Tree regression predictions of moderate-to-good
etal-binding capacity

The mean Kr values listed in Table 1 show that, on average, the

orption or retention of these metals by the soil horizons studied
ncreased in the order Cd < Cu < Pb. The least of the maximum Kr val-
es listed in Table 1 is 0.6, corresponding to competitive retention
f cadmium. Here we identify, for each experimental situation, the
oil characteristics that are predicted by tree regression to be asso-
ed soil horizons. Top, non-competitive; bottom, competitive.

ciated with mean Kr values greater than 0.6 in all the corresponding
terminal nodes.
For non-competitive sorption of Cd: CECe > 10.97 cmol kg−1.
For non-competitive retention of Cd: CECe > 19.28 cmol kg−1.
For competitive sorption and retention of Cd, there are no terminal
nodes with mean Kr > 0.6.
For non-competitive sorption and retention of Cu: pH > 5.45.
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cropp
Fig. 6. CART binary regression tree for retention of lead by 20

For competitive sorption and retention of Cu: CECe > 19.28 cmol
kg−1.
For non-competitive sorption of Pb: pH > 5.45 or organic matter
content > 67.5 g kg−1.

For non-competitive retention of Pb: pH > 5.45 (although
the combination of organic matter content > 30.6 g kg−1 and
CECe > 3.6 cmol kg−1 may be considered as borderline conditions).
For competitive sorption and retention of Pb: CECe > 10.97 cmol
kg−1.
ed soil horizons. Top, non-competitive; bottom, competitive.

For total sorption and retention of Cd, Cu and Pb when added
together: pH > 6.15, Al oxides’ content ≤9.8 g kg−1.

Whether Kr >0.6 or not (i.e. whether or not more than 60% of

added metal was sorbed or retained) thus depended only on CECe,
pH and organic matter content, and in all three cases, as the values
of these parameters increased, Pb was among the metals for which
that value of Kr was first reached. Non-competitive sorption or
retention of >60% of added Pb or Cu was predicted by pH >5.45 (or by
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Fig. 7. CART binary regression tree for total sorption (top) and retention (bottom) of Cd, Cu, and Pb by 20 cropped soil horizons.

o
i
b
C
a
w
P

rganic matter content >67.5 g kg−1 in the case of Pb), and compet-
tive sorption or retention of >60% of added Pb or Cu was predicted

y a high enough CECe (>11 cmol kg−1 for Pb, >19.3 cmol kg−1 for
u). Non-competitive sorption or retention of >60% of added Cd was
lso predicted by a high enough CECe, but Cd sorption and retention
ere predicted never to attain this level in the presence of Cu and

b.
4. Conclusions
These horizons sorb and retain cadmium, copper and lead in the
order Cd < Cu < Pb. Sorption and retention of Cd is depressed by the
presence of Cu and Pb. The soil parameters that are most associated,
overall, with differences in Cd, Cu and Pb sorption and retention are
CECe, pH and Mn oxides’ content, although the sorption or reten-
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ion of >60% of added heavy metal is dependent almost exclusively
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